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In this, the first of three papers, the nature of, and motivation for, neuronal transients is described in

paper deals with some basic aspects of neuronal

dynamics, interactions, coupling and implicit neuronal codes. The second paper develops neuronal
transients and nonlinear coupling in the context of dynamic instability and complexity, and suggests that
instability or lability is necessary for adaptive self-organization. The final paper addresses the role of
neuronal transients through information theory and the emergence of spatio-temporal receptive fields

By considering the brain as an ensemble of connected dynamic systems one can show that a sufficient
description of neuronal dynamics comprises neuronal activity at a particular time and its recent history.

such, transients represent a fundamental metric of

neuronal interactions and, implicitly, a code employed in the functional integration of brain systems. The
nature of transients, expressed conjointly in distinct neuronal populations, reflects the underlying
coupling among populations. This coupling may be synchronous (and possibly oscillatory) or asynchro-

nous. A critical distinction between synchronous and asynchronous coupling is that the former is

essentially linear and the latter is nonlinear. The nonlinear nature of asynchronous coupling enables the

rich, context-sensitive interactions that characterize real brain dynamics, suggesting that it plays a role in

functional integration that may be as important as synchronous interactions. The distinction between

linear and nonlinear coupling has fundamental implications for the analysis and characterization of

neuronal interactions, most of which are predicated on linear (synchronous) coupling (e.g. cross-

correlograms and coherence). Using neuromagnetic data it is shown that nonlinear (asynchronous)

coupling is, in fact, more abundant and can be more significant than synchronous coupling.

Keywords: neuronal transients; complexity; functional integration; neural codes; selection;

self-organization

1. INTRODUCTION

"his paper is about the dynamical aspects of brain
anction. Brain states are inherently labile, with a
omplexity and transience that renders their invariant
haracteristics elusive. The position adopted in these
rticles is that the most fruitful approach to under-
-anding brain dynamics is to study this instability and
cansience. The aim of this paper is to introduce the
otion of neuronal transients and the underlying frame-
rork, within which issues such as neuronal coupling,
euronal codes, functional integration, self-organization
nd the special complexity of brain dynamics can be
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2”2 ddressed. The central tenet is that the behaviour of
L_)O euronal systems can be viewed as a succession of
= cansient spatio-temporal patterns of activity that
8U w 1ediate adaptive perceptual synthesis and sensorimotor
tn% Onategration. This integration is shaped by the brain’s
92 natomical infrastructure, principally connections, that
E§ as been selected to ensure the adaptive nature of the
B.F= | ynamics that ensue. Although rather obvious, this

>rmulation embodies one fundamental point; namely
aat any proper description of brain dynamics should

hil. Trans. R. Soc. Lond. B (2000) 355, 215-236
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have an explicit temporal dimension. In other words,
measures of brain activity are only meaningful when
specified over extended periods of time. Simply appre-
ciating this fact leads to quite compelling insights about
brain organization and places some extant concepts in a
more general context. The first example, considered in
this paper, is that of neuronal codes: when trying to
construct a taxonomy of neuronal codes it becomes clear
that existing formulations are special cases of a more
generic transient coding. This is particularly important in
relation to fast dynamic interactions among neuronal
populations that are characterized by synchrony.
Synchronization has become popular in the past years
(e.g. Eckhorn et al. 1988; Gray & Singer 1989; Engel et al.
1991) and yet may represent only one domain in the
possible and, as will be shown, actual universe of interac-
tions. Transient coding subsumes both synchronous and
asynchronous interactions and it 1is the latter which
mediate the nonlinear and context-sensitive features of
brain dynamics.

The arguments presented in these papers depend, in
part, on a mathematical formulation that i1s developed to
reinforce, illustrate and, at times, motivate the ideas

215 © 2000 The Royal Society
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aitroduced. Important mathematical derivations are
rovided in the appendices for the interested reader,
/hile only key equations are presented in the main text.
n general it is the form of these equations that is
nportant, not their content. Details concerning data
cquisition and simulation parameters are provided in
he figure legends. This paper is divided into six sections.
n §2 we review the conceptual and mathematical basis

f neuronal transients. This section uses a fundamental

quivalence, between two mathematical formulations of
onlinear systems, to show that descriptions of brain
ynamics, in terms of (1) neuronal transients and (ii) the
>= ffective connectivity among interacting brain systems, is
= omplete and sufficient. In § 3, the ensuing framework is
Qﬁ Fd sed to motivate a taxonomy of putative neuronal codes,

™ he relationships among them and the predictions that

OYAL

rise. In §4, we review the evidence for neuronal transi-

HE

nts in terms of phenomena such as ‘dynamic correlations’
=~ vAnd interactions between brain regions
videnced by asynchronous coupling. This section
oncludes with a direct test of the transient hypothesis,
sing data acquired with magnetoencephalography
MEG) that is based on the predictions from § 2. Section
addresses the general relationship between asynchro-

nonlinear

ous coupling and nonlinear interactions, leading to a
iscussion in §6 of the neurobiological mechanisms (e.g.
10dulatory effects) that might mediate them.
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2. NEURONAL TRANSIENTS

(a) Neuronal transients and time

The assertion that teleologically meaningful measures
r metrics of brain dynamics have an explicit temporal
omain 1s neither new nor contentious (e.g. Von der
Aalsburg 1981, Optican & Richmond 1987 Engel et al.
991; Aertsen et al. 1994; Freeman & Barrie 1994; Abeles
al. 1995; deCharms & Merzenich 1996). A straight-
srward analysis demonstrates its veracity: the brain is a
ighly nonlinear, spatially extended system that is unique
1 relation to other complex systems by virtue of its
onnectedness. The brain’s architecture can be regarded
s an ensemble of connections, where the nature and

B

rganization of these connections entails the substance of
he system. The signals that traverse connections (axons
nd dendritic cell processes) do so in a finite amount of
ime. Suppose that one wanted to posit a sufficient metric
hat described the brain as a dynamical system in terms
f neuronal activity. A natural choice would be the state
ariable x in a state equation

x(1)]0t = [ (%, C), (1)
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there x 1s a large vector of activities for each unit in
he brain. These activities could be expressed in many
rays, for example firing at the initial segment of an
xon or local field potentials of neuronal populations.
w.quation (1) simply says that the change in activity with
Olme Ox()/0¢ is a function of x and C, a collection of
ontrol parameters corresponding to the underlying, time-
wariant, connection strengths (e.g. synaptic efficacy).
Iowever, equation (1) would not be sufficient because it
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1ay take several, possibly tens of, milliseconds for the
ctivity in one neuron, or population, to propagate to its
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recipient. So the change in any unit is a function not just of
activity elsewhere at time ¢ but at time ¢ and in the recent
past. This leads to the equation

x(t) = f(x(t = u), C). (2)

Equation (2) is, in principle, a sufficient description of
brain dynamics and involves the variable x(f—u), which
represents activity at all times u preceding the moment in
question. x(t—u) 1s simply a neuronal transient (albeit a
very global one). The degree of transience depends on how
far back in time it is necessary to go to fully capture the
brain’s dynamics. In less abstract terms, if we wanted to
determine the behaviour of a cell in the primary visual
cortex (V1), then we would need to know the activity of all
connected cells in the immediate vicinity (say within the
same cortical column) over the last millisecond or so. We
would also need to know the activity in distant sites, like
the lateral geniculate nucleus (LGN) and higher cortical
areas that send afferents, some ten or more milliseconds
ago. In short, we need the recent history of all inputs.

Transients can be expressed in terms of firing rates (e.g.
chaotic oscillations; Freeman & Barrie 1994) or individual
spikes (e.g. synfire chains; Abeles ef al. 1994,1995). In what
follows, we will assume that the relevant measurements
pertain to those behaviours of cells that can influence other
cells. There is a fundamental reason for this, which will
become apparent below. The analysis above is not just a
mathematical abstraction, it has very real implications at
a number of levels: for example, the emergence of fast
oscillatory interactions among simulated neuronal
populations depends on the time-delays implicit in axonal
transmission and the time constants of postsynaptic
responses. Another slightly more subtle aspect of this
formulation 1s that changes in synaptic efficacy, such as
short-term potentiation or depression, take some time to
be mediated by intracellular mechanisms. This means that
the interaction between x({ —u) and C, that models these
activity-dependent effects in equation (2), again depends
on the relevant history of activity.

(b) Different levels of description

An alternative perspective, on the necessity of going
back in time to acquire a sufficient description of
neuronal dynamics, is buried in the phrase above; ‘a suffi-
cient metric that describes the brain as a dynamical
system in terms of neuronal activity’. This perspective is a
little abstract, but provides a strong basis for neuronal
transients. By restricting ourselves to measuring neuronal
activity, there are a vast number of critical variables that
are being ignored (e.g. the electro- and biochemical state
of every cell process in the brain). If we knew every one of
them then equation (1) might be a tenable model, consti-
tuting a microscopic level of description that would be
entirely sufficient and complete. However, because we do
not have access to this complete ensemble of ‘hidden’
variables, we are apparently unable to ever describe brain
dynamics properly. This is not necessarily the case.

(1) A fundamental equivalence
Assume that every neuron in the brain is modelled by
some immensely complicated nonlinear dynamical system
of the sort described by equation (1), where the state
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ariables range from depolarization at every point in the
endritic tree to the phosphorylation status of every
elevant enzyme. The input to this system corresponds to
fferent activity and the output to firing at the cell’s initial
sgment. Notice that both the input and the output are
omologous in that they both measure that aspect of a
ystem’s (cell’s) behaviour that can influence another
ystem. Under these assumptions it can be shown that the
utput is a function of the recent history of its inputs.

urthermore this relationship can be expressed as a
‘olterra series of the inputs (see Appendix A and §2(c)).
“he critical thing here 1s that we never need to know the
>= nderlying and ‘hidden’ variables that describe the details
= { each cell’s electrochemical and biochemical status, we
Qﬁ Fd nly need to know the history of its inputs, which, of

= ourse, are the outputs of other cells (including the one in

OYAL

uestion). This leads to a conceptual model of the brain as a
O ollection of dynamical systems (e.g. cells or populations of
f= ©ells), each of which is represented as an input—state—
utput model, where the state remains, for us, forever

HE

idden. However, the inputs and outputs are accessible and
re causally related where, in this special case of massively
onnected systems, the output of one system constitutes the
0 1put
omprises the nature of these relationships (the Volterra

to another. A complete description therefore
cries) and the neuronal transients (past history of all
1puts). This constitutes a mesoscopic level of description,
rhich allows a certain degree of ‘black-boxness’as long as
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aere is no loss of information or precision in specifying the
1teractions among the black boxes (cells or populations).

The equivalence, in terms of specifying the behaviour of a
euronal system, between microscopic and mesoscopic levels
f description is critical and one that is central to this paper
nd neuronal transients. In short, the equivalence means that
1I the information inherent in the unobservable microscopic
ariables that determine the response of a neuronal system is
mbodied in the history of its observable inputs and outputs.
"his means that neuronal transients are a sufficient descrip-
on of a system which eschew the measurement of hidden
ariables when predicting responses. Although the micro-
-opic level of description may be more causally inter-
retable, from the point of view of response prediction,
euronal transients are an equivalent representation.

We have focused above on the distinction between

B

1croscopic and mesoscopic levels of description. The
1acroscopic level is reserved for approaches, exemplified
y synergistics (Haken 1983), that try to characterize the
satio-temporal evolution of brain dynamics in terms of a
— nall number of macroscopic order parameters (see
(Uzelso (1995) for an engaging exposition). For example,
Olacroscopic variables can be extracted from large-scale
wn bservations, such as magnetoencephalography (MEG),
sing the order parameter concept: order parameters are
reated and determined by the cooperation of micro-

ETY

copic quantities and yet, at the same time, govern the
ehaviour of the whole system. We will not deal with
w aese approaches here but interested readers are referred
0> Jirsa et al. (1995) for an example.

(c) A nonlinear framework
The fact that a mesoscopic level of description exists
aggests that (1) a complete description of dynamics could
e cast in terms of neuronal transients; and (i1) a

TRANSacTions 1HE ROYAL
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complete model of effective connectivity (i.e. the causal
influences that one neuronal system exerts over another)
should take the form of a Volterra series. These are quite
fundamental conclusions. The primary focus of these
papers is the first conclusion: namely, one can either try
to measure every aspect of brain function and charac-
terize the dynamics in terms of equation (1), or one can
identify the essential inputs and outputs of its components
and work explicitly with their recent history, i.e. frame
the dynamics in terms of neuronal transients as in equa-
tion (2). The former is impossible. The latter is the subject
of this paper.

Volterra series offer a very general form for the func-
tions in equation (2) and can be expressed as

x(0) = Qx()] + Q[xe(D)]+ ...+ Qx(D] + ..., (3)

where x,(f) is the activity of the ith unit. Q,[-] is the nth
order Volterra operator and has associated with it a
kernel or smoothing function % that operates on the recent
history of the inputs. Volterra series are functional Taylor
expansions and are generally thought of as nonlinear
convolutions or polynomial expansions with memory (see
Appendix A). We have found this nonlinear system identi-
fication framework very wuseful when -characterizing
neuromagnetic and haemodynamic time-series
functional magnetic resonance imaging (fMRI) and it is
used below many times. See also Stevens (1994).

The distinction, and equivalence, between microscopic
and mesoscopic levels of description is illustrated in
figure 1. Clearly this equivalence cannot be demonstrated
for real neuronal systems but can be shown using reason-
ably realistic synthetic or model systems. Figure 1
contains a schematic that summarizes the equations
behind the simulations used in these papers (see
Appendix B). Collectively these equations are an example
of equation (1) because they deal with all the relevant
state variables (depolarization, channel configuration,
discharge probability, etc) and control parameters
(synaptic eflicacies, time constants, etc.). These equations
constitute a microscopic level of description enabling one
to predict the evolution of the system given only its state
at one point in time. This system of differential equations
has an entirely equivalent description in terms of the
Volterra kernels that mediate between inputs and the
responses (the first few are shown in figure 15). These
kernels can be applied to incoming transients, to give the
responses, without knowing the underlying state vari-
ables. All that is needed is the input over a period of time.

For completeness, it can be noted that the Volterra
formulation, based on the recent history of a system’s
inputs, is conceptually related to temporal embedding
used to ‘reconstruct’ the dynamics of a system given only
one variable. Temporal embedding involves using the
current value of the state variable and a succession of
values at a number of discrete times in the past. See
Muller-Gerking et al. (1996) for a useful discussion of this
approach in relation to the nonlinear characterization of
neuronal time-series.

Arguments like those above suggest that the ‘neuronal
moment’ lasts for tens if not hundreds of milliseconds and

from

that the instantaneous behaviour of neuronal units cannot
be divorced from their immediate temporal context. This
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. igure 1. Schematic illustrating the distinction between (¢) a microscopic level of description of a neuronal system (e.g cell or
== opulation) where all the hidden variables are known, enabling the output to be causally related to the instantaneous input.

(U nd (b) a more ‘black-box’ mesoscopic level in which it is only necessary to know the recent history of the inputs to determine the

H

PHILOSOPHICAL
TRANSACTIONS

B

PHILOSOPHICAL
TRANSACTIONS THE ROYA

@)
= w

SOCIETY

OF

utputs. The left panel details the operational equations of simulated neuronal populations used in subsequent sections and

1e right panel gives an example of the Volterra kernels that characterize the ensuing input—output relationships. The simulated
opulations are described in detail in Appendix B and comprise two subpopulations (one excitatory and one inhibitory). These
opulations are described in terms of the mean transmembrane potential (V) and the probability that constituent units of
ibpopulation j will fire (D)) in a deterministic way. The connectivity between them is described in terms of P;, the probability
a1at a discharge event in j will open a postsynaptic channel in subpopulation £. The probability of channel opening P,, is
omputed by considering all potential inputs, including extrinsic inputs. The probability of channel opening enters into a
rst-order kinetic model of channel configuration for all £ channel types. The expected proportion of open channels g, in turn
1ediates changes in transmembrane potential though conductance changes and the depolarization relative to the equilibrium
otential V; for that channel. Finally the discharge probability is computed as a sigmoid function of I and the effective reversal
otential V.. The same input—output behaviour can be emulated by convolving the recent history of the inputs with a series of
"olterra kernels of increasing order. In the example shown zeroth-, first- and second-order kernels are shown for the AMPA

mulations depicted in figure 4. In this instance the input was taken to be the injected current and the output corresponded to
1e simulated local field potential. These kernels were estimated using least squares after expressing them in terms of basis
inctions (eighth-order discrete sine set over 128 ms) as described in Appendix E.

; not startling and is similar to noting that ‘population
odes’ are necessarily distributed over many units.
leuronal transients take this one step further and stipulate
hat ‘transient codes’ are necessarily distributed over time.
.0ooked at in this way, neural transients are a natural
xtension of the trend to characterize brain dynamics in
elation to the context in which they occur. Neuronal tran-
lents represent an attempt to generalize the notion of
opulation dynamics into the temporal domain.

(d) Effective connectivity and Volterra kernels

The second conclusion above (a complete model of
ffective connectivity should take the form of a Volterra
cries) implies that a complete characterization of effec-
lve connectivity, among neuronal systems, can be framed
1 terms of the Volterra kernels associated with the trans-
srmations of, and interactions among, inputs that yield
he outputs.

(1) Effective connectivity
Functional integration is usually inferred using correla-
among measurements of neuronal activity in
ifferent brain systems. In imaging neuroscience, the

lons

arm ‘functional connectivity’ denotes the simple presence
u f these correlations (Iriston 19954). However, correla-
Olons can arise in a variety of ways. For example, in
wlti-unit electrode recordings they can result from
imulus-locked transients evoked by a common input, or

eflect stimulus-induced oscillations mediated by synaptic
onnections (Gerstein & Perkel 1969; Gerstein et al. 1989).
ntegration within a distributed system is better under-

hil. Trans. R. Soc. Lond. B (2000)

stood in terms of ‘effective connectivity’. Effective
connectivity refers explicitly to ‘the influence that one
neural system exerts over another, either at a synaptic
(1.e. synaptic efficacy) or population level’ (Friston 1995a).
It has been proposed (Aertsen & Preifll 1991) that ‘the
[electrophysiological] notion of effective connectivity
should be understood as the experiment- and time-
dependent, simplest possible circuit diagram that would
replicate the observed timing relationships between the
recorded neurons’. This speaks to two important points:
(1) effective connectivity is dynamic; and (i1) it depends
on a model of the interactions.

If effective connectivity is the influence that one neural
system exerts over another, it should be possible, given the
effective connectivity and the afferent activity, to predict
the response of a recipient population. This is precisely
what Volterra kernels do. Any model of effective connec-
tivity will be a special case of a Volterra series and any
measure of effective connectivity can be reduced to a set of
Volterra kernels. An important aspect of effective connec-
tivity is its context sensitivity. Effective connectivity is
simply the ‘effect’ that an input has on the output of a
target system. This effect will be sensitive to the history of
the inputs (and outputs) and, of course, the microscopic
state and causal architecture intrinsic to the target popula-
tion. This intrinsic dynamical structure is embodied in the
Volterra kernels and the current state of the target popula-
tion enters thought the history of the outputs, that can re-
enter as inputs. In short, Volterra kernels are synonymous
with effective connectivity because they characterize the
measurable ‘effect’ that an input has on its target. The use
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f Volterra kernels in characterizing effective connectivity
rill be dealt with elsewhere.

3. NEURONAL CODES

(a) Different sorts of code
The conjecture that functional integration may be
1ediated by the mutual induction and maintenance of
cereotyped spatio-temporal patterns of activity (i.e.

euronal transients) in distinct neuronal populations was
resented in Friston (19956, 19974). Functional integration
efers here to the concerted interactions among neuronal
>= opulations that mediate perceptual binding, sensori-

10tor integration and cognition. It pertains to the
Qﬁ Ediechanisms  of, and which, the

= ynamics of one population influence those of another. It

OYAL

constraints under

as been suggested by many, that integration among

HE

O euronal populations uses transient dynamics that
f= @ zpresent a temporal ‘code’. A compelling proposal is that
opulation responses, encoding a percept, become orga-
time, through reciprocal interactions, to
ischarge in synchrony (Milner 1974; Von der Malsburg
985; Singer 1994). The use of the term ‘encoding’ here
seaks directly to the notion of codes.

ized in

A‘code’ is used here to mean a measurement or metric
f neuronal activity that captures teleologically mean-
1gful transactions among different parts of the brain. No

PHILOSOPHICAL
TRANSACTIONS
OF

ttempt is made to discern the meaning or content of a
utative code. All that is assumed is that a code or metric
wst necessarily show some dependency when used to
ssess two Interacting neuronal populations or brain
reas. In other words, a neuronal code is a metric that
eveals interactions among neuronal systems by enabling
ome prediction of the activity in one population given
ae activity in another. Clearly, from §2, neuronal
cansients represent the most generic form of code. Given
aat neuronal transients have a number of attributes (e.g.
aeir duration, of firing, predominant
‘equency, etc.), any one of these attributes is a contender

mean level

>r a more parsimonious code. Although the term code is
ot being used to denote anything that ‘codes’ for some-
aing in the environment, it could be used to define some
spect of a sensory evoked transient that had a high
wtual information with a sensory parameter that was

B

1anipulated experimentally (e.g. Optican & Richmond
987; Tovee et al. 1993).

Given the above definition, the problem of identifying
ossible codes reduces to establishing which metrics are
— wutually predictive or statistically dependent when
3 (Jpplied to two connected neuronal systems. This is quite
n important point and leads to a very clear formulation
f what can and cannot constitute a code and the
ifferent sorts of codes that might be considered. Further-
10ore using this operational definition, the problem of
nding the right code(s) reduces to identifying the form
f the Volterra operators in equation (3), for if we know
waese we can predict exactly what will ensue in any unit,
Oliven the dynamics elsewhere. Conversely, it follows that
ae different forms that equation (3) can take should
secify the various codes likely to be encountered. We will
eturn to this point in a subsequent section.

ROYAL
ETY
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1o discuss the nature of neuronal transients, in relation
> codes, a taxonomy is now introduced. The most

hil. Trans. R. Soc. Lond. B (2000)

neuronal codes
instantaneous transient
(e.g. rate codes)
asynchronous synchronous
(nonlinear) (linear)

oscillatory

non-oscillatory (phase-coding

Figure 2. A simple taxonomy of neuronal codes, where
commonly appreciated forms of encoding are seen as special
cases of each other.

general form of coding is considered to be transient
coding. All other codes are special cases, or special cases
of special cases. The most obvious special case of a
transient is when that transient shrinks to an instant in
time. The associated codes will be referred to as instanta-
neous codes that subsume temporal coding and rate
coding, depending on the nature of the metric employed.
A more important distinction is whether two transients in
two neuronal systems are synchronous or asynchronous,
leading to the notion of synchronous codes and asynchro-
nous codes. This synchronization may in turn be oscilla-
tory or not, leading to oscillatory codes or non-oscillatory
codes. Therefore oscillatory codes are a special case of
synchronous codes that are themselves special cases of
transient codes. This hierarchial decomposition is shown
schematically in figure 2. This taxonomy is now reviewed
in more detail, working from the special cases to the
more general.

(1) Instantaneous codes: temporal and rate coding

The distinction between temporal coding and rate
coding (see Shadlen & Newsome 1995 de Ruyter van
Steveninck et al. 1997) centres on whether the precise
timing of individual spikes 1is sufficient to facilitate
meaningful neuronal interactions. In temporal coding,
the exact time at which an individual spike occurs is the
important measure and the spike-train is considered as a
point process. The term temporal coding is used here in
this restricted sense, as opposed to designating codes that
have a temporal domain (e.g. Von der Malsburg 1985;
Singer 1994). There is a critical distinction between
instantaneous temporal codes and those that invoke some
temporal patterning of spikes over time. The former
include, for example, the instantaneous phase relationship
between a spike and some reference oscillation. Although,
in simple systems, knowledge of this phase will allow
some prediction of responses in a target unit, it would not
be sufficient for more nonlinear systems where one would
need to know the history of phase modulation. The
second sort of temporal code is distributed over time and
represents a transient code. There are clear examples of
these codes that have predictive validity, for example, the
primary by the

cortical representation of sounds
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oordination of action potential timing (deCharms &
Aerzenich 1996). These codes depend on the relative
iming of action potentials and implicitly, by appealing to
n extended temporal frame of reference, fall into the
lass of transient codes. A very good example of this is
rovided by the work of de Ruyter van Steveninck et al.
l997) who show that the temporal patterning of spike-
rains, elicited in fly motion-sensitive neurons by natural

imuli, carry twice the amount of information as an
quivalent (Poisson) rate code.

— Instantaneous rate coding considers spike-trains as
< ‘ochastic processes whose first-order moments (i.e. mean
o = ctivity) provide a metric with which neuronal inter-
O = ctions are enacted. These moments may be in terms of
Qﬁ Fdoikes themselves or other compound events (e.g. the

== verage rate of bursting; Bair e/ al. 1994). The essential

spect of rate coding is that a complete metric would be

he average firing rates of all the system’s components at
f= @2 ne instant in time. Interactions based on rate coding are
sually assessed in terms of cross-correlations and many
10dels of associative plasticity are predicated on these
orrelated firing rates (e.g. Hebb 1949). In this paper,
astantaneous rate codes are considered insufficient as
roper descriptions of neuronal interactions because, in
he absence of ‘hidden’ microscopic variables, they are
ot useful. This 1s because they predict nothing about a
ell, or population, response unless one knows the micro-
-opic state of that cell or population.
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(i1) Synchronous codes: oscillatory and non-oscillatory codes

The proposal most pertinent to these forms of coding
; that population responses, participating in the
ncoding of a percept, become organized in time
hrough reciprocal interactions so that they come to
ischarge in synchrony (Von der Malsburg 1985; Singer
994) with regular periodic bursting. Irequency-specific
ateractions and synchronization are used synonymously
1 this paper. It should be noted that synchronization
oes not mnecessarily 1mply oscillations. However,
ynchronized activity is usually inferred operationally by
scillations implied by the periodic modulation of cross-
orrelograms of separable spike-trains (e.g. Eckhorn et
[. 1988; Gray & Singer 1989) or measures of coherence
1 multichannel electrical and neuromagnetic time-series
2.g. Llinas et al. 1994). The underlying mechanism of
>_‘hese frequency-specific interactions is usually attributed

> phase-locking among neuronal populations (e.g.
Ly borns ¢ al. 1992; Aertsen & PreiBl 1991). The key aspect
— [ these metrics is that they refer to the extended
4 (J:mporal structure of synchronized firing patterns, either
1 terms of spiking (e.g. synfire chains; Abeles et al. 1994;
amer el al. 1997) or oscillations in the ensuing popula-
lon dynamics (e.g. Singer 1994).

One important aspect, that distinguishes oscillatory
-om non-oscillatory codes, is that the former can embody
onsistent phase relationships that may play a mechanistic
wole in the ontology of adaptive dynamics (e.g. Tononi et
O1/.1992). This has been proposed for theta rhythms in the
ippocampus and more recently for gamma rhythms (e.g.
wurgess el al. 1994; see Jefferys et al. (1996) for further
iscussion).

Many aspects of functional integration and feature
nking in the brain are thought to be mediated by
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synchronized dynamics among neuronal populations
(Singer 1994). Synchronization reflects the direct, reci-
procal exchange of signals between two populations,
whereby the activity in one population influences the
second, such that the dynamics become entrained and
mutually reinforcing. In this way the binding of different
features of an object may be accomplished, in the
temporal domain, through the transient synchronization
of oscillatory responses (Von der Malsburg 1981). This
‘dynamical linking’ defines their short-lived functional
association. Physiological evidence is compatible with this
theory (e.g. Engel et al. 1991): synchronization of oscilla-
tory responses occurs within, as well as among, visual
areas, for example between homologous areas of the left
and right hemispheres and between areas at different
levels of the visuomotor pathway (Engel et al. 1991; Roelf-
sema et al. 1997). Synchronization in the visual cortex
appears to depend on stimulus properties, such as conti-
nuity, orientation and motion coherence. Synchronization
may therefore provide a mechanism for the binding of
distributed features and contribute to the segmentation of
visual More generally, synchronization may
provide a powerful mechanism for establishing dynamic
cell assemblies that are characterized by the phase and
frequency of their coherent oscillations.

The problem with these suggestions is that there is
nothing essentially dynamic about oscillatory interactions.
As argued by Erb & Aertsen (1992), ‘the question might
not be so much how the brain functions by virtue of
oscillations, as most researchers working on cortical oscil-
lations seem to assume, but rather how it manages to do
so in spite of them’ In order to establish dynamic cell
assemblies, it 1s necessary to create and destroy synchro-
nized couplings. It is precisely these dynamic aspects that
render synchronization per se relatively uninteresting but
speak to changes in synchrony (e.g Desmedt & Tomberg
1994) and the transitions between synchrony and asyn-
chrony as the more pertinent phenomenon.

sScenes.

(i) Transient coding: synchronous and asynchronous codes

An alternative perspective on neuronal codes 1s provided
by work on dynamic correlations (Aertsen et al. 1994) as
exemplified in Vaadia et al. (1995). A fundamental phenom-
enon observed by Vaadia et al. (1995) is that, following
behaviourally salient events, the degree of coherent firing
between two neurons can change profoundly and systema-
tically over the ensuing second or so. One implication of
this work is that a complete model of neuronal interactions
has to accommodate dynamic changes in correlations,
modulated on time-scales of 100—1000 ms. A simple expla-
nation for these dynamic correlations has been suggested
(Friston 19956): it was pointed out that the coexpression of
neuronal transients in different parts of the brain could
account for dynamic correlations (see §4). This transient
hypothesis suggests that interactions are mediated by the
expression and induction of reproducible, highly struc-
tured spatio-temporal dynamics that endure over several
hundred milliseconds. As in synchronization coding, the
dynamics have an explicit temporal dimension but there is
no special dependence on oscillations or synchrony. In
particular, the frequency structure of a transient in one
part of the brain may be very different from that in

another. In synchronous interactions the frequency
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ructures of both will be the same (whether they are oscil-
itory or not).

If the transient model is correct then important
ransactions among cortical areas will be overlooked by
>chniques that are predicated on rate coding
correlations, covariance patterns, spatial modes, etc.) or
ynchronization models (e.g. coherence analysis and
ross-correlograms). Clearly the critical issue here is
hether one can find evidence for asynchronous inter-
ctions that would render the transient level of the
axonomy a useful one (see figure 2). Such evidence would
seak to the importance of neuronal transients and place
>= ynchronization in a proper context. In §4, we review the
= direct evidence for neuronal transients and then provide
Qﬁ Fd irect evidence by addressing the relative contribution of

= ynchronous and asynchronous coupling to interactions
etween brain areas.

OYAL B

HE
OC

S

4. THE EVIDENCE FOR NEURONAL TRANSIENTS

We are all familiar with neuronal transients in the form
f evoked transients in electrophysiology. However, the
ritical thing is whether transients in two neuronal popula-
ons mediate their own induction. For example, at the
>vel of multi-unit micro-electrode recordings, correlations
an result from stimulus-locked transients, evoked by a
ommon afferent input, or reflect stimulus-induced inter-
ctions—phasic  coupling of neuronal assemblies,
1ediated by synaptic connections (Gerstein & Perkel
969; Gerstein et al. 1989). The question here is whether
aese interactions can be asynchronous? One important
1dication that stimulus-induced interactions are not
ecessarily synchronous comes from dynamic correlations.

PHILOSOPHICAL T
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(a) Dynamic correlations and neuronal transients

As mentioned above, Vaadia et al. (1995) presented
ompelling results concerning neuronal interactions in
10nkey cortex, enabling them to make two fundamental

oints: (1) it is possible that cortical function is mediated by

1e dynamic modulation of coherent firing among
eurons; and (i) that these time-dependent changes in
orrelations can emerge without modulation of firing rates.
n Jne implication is that a better metric of neuronal inter-
ctions could be framed in terms of dynamic changes in
orrelations. This possibility touches on the distinction
etween temporal coding and rate coding as described in

<
S :16 §3. This distinction, and the related debate (e.g.
59

B

hadlen & Newsome 1995), centres on whether the precise
— ming of individual spikes can represent sufficient infor-
Ha (Jhation to facilitate information transfer in the brain. The
osition adopted by Vaadia et al. (1995) adds an extra
— imension to this debate: while accepting that spike-trains
an be considered as stochastic processes (i.e. the exact
me of spiking is not vital), they suggest that temporal
oding may be important in terms of dynamic, time-
ependent and behaviourally specific changes in the
w robability that two or more neurons will fire together. In
Ohadlen & Newsome (1995), ‘precise’ timing means
ynchronization within 1-5ms. In contrast Vaadia et al.
[995) demonstrate looser coherence over a period of about
00ms (using 70 ms time bins). A simple explanation for
ais temporally modulated coherence or dynamic correla-
.on 1s provided by the notion of neuronal transients.
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Imagine that two neurons respond to an event with a
transient (a short-lived, stereotyped,
dependent change in the propensity to fire). For example, if
two neurons respond to an event with decreased firing for
400 ms, and this decrease was correlated over epochs, then
positive correlations between the two firing rates would be
seen for the first 400 of the epoch and then fade away,
therein emulating a dynamic modulation of coherence. In
other words, a transient modulation of covariance can be
equivalently formulated as a covariance in the expression
of transients. The generality of this equivalence can be
established using singular value decomposition (SVD).
Dynamic correlations are inferred on the basis of the
cross-correlation matrix of the trial by trial activity as a
function of peristimulus time. This matrix is referred to as
the joint peristimulus time histogram (JPSTH) and
implicitly discounts correlations due to stimulus-locked
transients by dealing with correlations over trials (as
opposed to time following the stimulus or event). Let x; be
a matrix whose rows contain the activities recorded in unit
¢ over a succession of time bins following the stimulus, with
one row for each trial. Similarly for x;. After these matrices
have been normalized, the cross-correlation matrix is
given by xl-ij where T'denotes transposition. By noting the
existence of the singular value decomposition

similar time-

x}xj = UV + Ay 0y + AgUi 05+ ..., (4)

Tx. can

one observes that any cross-covariance structure x; x;

be expressed as the sum of covariances due to the expres-
sion of paired transients (the singular vectors u, and v,).
The expression of these transients covaries according to
the singular values 4;,. In this model, any observed
neuronal transient in unit ¢ is described by a linear combi-
nation of the u, (or v;in unit ).

This is simply a mathematical device to show that
dynamic changes in coherence are equivalent to the
coherent expression of neural transients. In itself it is not
important, in the sense that dynamic correlations are just
as valid a characterization as neuronal transients and
indeed may provide more intuitive insights into how this
phenomenon is mediated at a mechanistic level (e.g.
Riehle et al. 1997). What is important is that the existence
of dynamic correlations implies the existence of transients
that exist effects
discounted. The next step is to find definitive evidence
that transients underpin asynchronous coupling, or
equivalently that coupled transients in two neuronal
populations have a different form or frequency structure.
The essential issue, that remains to be addressed, is
whether a transient in one brain system, that mediates the
expression of another transient elsewhere, has the same or
a different temporal patterning of activity. The impor-
tance of this distinction will become clear below.

after stimulus-locked have been

(b) Synchrony, asynchrony and spectral density

Synchronized, fast dynamic among
neuronal populations represent a possible mechanism for
functional integration (e.g. perceptual binding) in the
brain, but focusing on synchrony precludes a proper
consideration of asynchronous interactions that may have
an equally important and possibly distinct role. In this
section, the importance of synchronization is evaluated in

interactions


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

22 K. ]J. Friston The labile brain

elation to the more general notion of neural transients
hat allow for both synchronous and asynchronous inter-
ctions. Transients suggest that neuronal interactions are
1ediated by the mutual induction of stereotyped spatio-
>mporal patterns of activity among different populations.
f the temporal structures of these transients are distinct
nd unique to each population, then the prevalence of
ertain frequencies in one cortical area should predict the
xpression of different frequencies in another. In contrast,
ynchronization models posit a coupled expression of the
ame frequencies. Correlations among different frequen-
ies therefore provide a basis for discriminating between
>= ynchronous and asynchronous coupling.
= Consider time-series from two neuronal populations or
Qﬁ Fdortical areas. The synchrony model suggests that the
== xpression of a particular frequency (e.g. 40 Hz) in one
ime-series will be coupled with the expression of the
Oime (40 Hz) frequency in the other (irrespective of the
f= @ xact phase relationship of the transients or whether they
re oscillatory or not). In other words, the modulation of
his frequency in one area can be explained or predicted
y its modulation in the second. Conversely, asynchro-
ous coupling suggests that the power at a reference
equency, say 40Hz, can be predicted by the spectral
ensity in the second time-series at some frequencies
ther than 40 Hz. These predictions can be tested empiri-
ally using standard time-frequency and regression
nalyses as exemplified below. These analyses are an
xtension of those presented in Friston (19974) and
that both synchronous and asynchronous
oupling are seen in real neuronal interactions. They use
IEG data, obtained from normal subjects while
erforming self-paced finger movements. These data were
indly provided by Klaus Martin Stephan and Andy

oannides.
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(c) Definitive evidence for asynchronous coupling
After Laplacian
1agnetoencephalographic data, two time-series were
slected. The first was an anterior time-series over the
entral prefrontal region and the second was a posterior
arietal time-series, both slightly displaced to the left.
1hese locations were chosen because they had been
nplicated in a conventional analysis of responses evoked

- y finger movements (Friston et al. 1996). Figure 3 shows
n example of these data in the time domain x(f) and in

> he frequency domain g(w,f) following a time-frequency
s nalysis. See Appendix G for a description of time-

Q{i = equency analyses and their relation to wavelet transfor-
Fa (Jhations. In brief, they give the frequency structure of a
ime-series, over a short period, as a function of time.
"he time-frequency analysis shows the dynamic changes
1 spectral density between 8 and 64 Hz over about 165.
"he cross-correlation matrix of the parietal and
refrontal time-frequency data is shown in figure 36.
"here is anecdotal evidence here for both synchronous
w nd asynchronous coupling. Synchronous coupling, based
O n the co-modulation of the same frequencies, is manifest
s hot spots along, or near, the leading diagonal of the
ross-correlation matrix (e.g. around 20 Hz). More inter-
sting are correlations between high frequencies in one
ime-series and low frequencies in another. In particular,
ote that the frequency modulation at about 34 Hz in the

transformation of multichannel
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parietal region (second time-series) could be explained
by several frequencies in the prefrontal region. The most
profound correlations are with lower frequencies in the
first time-series (26 Hz), but there are also correlations
with higher frequencies (54 Hz) and some correlations
with prefrontal frequencies around 34 Hz itself. The
problem here is that we cannot say whether there is a
true asynchronous coupling or whether there is simple
synchronous coupling at 34 Hz with other higher and
lower frequencies being expressed, in a correlated fashion,
within the prefrontal region. These within-region correla-
tions can arise from broad-band coherence (Bressler et al.
1993) or harmonics of periodic transients (see Jurgens
et al. 1995). In other words, synchronous coupling at
34 Hz might be quite sufficient to explain the apparent
correlations between 34Hz in the parietal region and
other frequencies in the prefrontal region. To address this
issue we have to move beyond cross-correlations and
make statistical inferences that allow for synchronous
coupling over a range of frequencies within the prefrontal
area. This is effected by treating the problem as a regres-
sion analysis and asking whether the modulation of a
particular frequency in the parietal region can be
explained in terms of the modulation of frequencies in the
prefrontal region, starting with the model

GWet) = > Blw) x g (w), (5)

where gy(w,f) and g,(w,?) are the spectral densities from
the parietal and prefrontal time-series and w; is the
frequency in question (e.g. 34 Hz). B(w) are the para-
meters that have to be estimated. 1o allow for couplings
among frequencies that
expression of frequencies within the areas, the predictor
or explanatory variables g (w,f) are decomposed into
synchronous and asynchronous predictors. These corre-
spond to the expression of the reference frequency in the
prefrontal region g (wy,f) and the expression of all
the remaining frequencies orthogonalized with respect to
the first predictor g, (w,!)" (see Appendix D). By orthogo-
nalizing the predictors in this way we can partition the
total variance in parietal frequency modulation into those
components that can be explained by synchronous and
asynchronous coupling, respectively,

arise from the correlated

&(Wot) = Blwy) X &1 (we,t) + Y Bw)" x g (Wt  (6)

Furthermore by treating one of the predictors as a
confound we can test, statistically, for the contribution of
the other (i.e. either synchronous or asynchronous) using
standard inferential techniques, in this instance the
F-ratio based on a multiple regression analysis of serially
correlated data (see Appendix D).

To recap for those less familiar with regression techni-
ques, we take a reference frequency in one time-series
(e.g. the parietal region) and try to predict it using the
expression of all frequencies in the other (e.g. prefrontal
region). To ensure that we do not confuse asynchronous
and synchronous interactions due to broad-band coher-
ence and the like, with the
frequency, within the prefrontal region, are removed from
the predictors.

correlations reference
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An example of the results of this sort of analysis are
1own in figure 3¢. Figure 3¢(i) shows the proportion of
ariance that can be attributed to either synchronous
broken line) or asynchronous coupling (solid line) as a
anction of frequency (w). In other words, the proportion
f variance in parietal spectral density that can be
redicted on the basis of changes in the same frequency in
ae prefrontal region (broken line) or on the basis of
ther frequencies (solid line). Figure 3c¢(i1) portrays the
gnificance of these predictions in terms of the associated
-values and shows that both synchronous and asynchro-
ous coupling are significant at 34 Hz (i.e. the middle
eak in figure 3¢(1),(i1)).

In contrast the high correlations between 48 Hz in the
R :cond time-series and 26 Hz in the first is well away from
== e leading diagonal in the cross-correlation matrix, with

ttle evidence of correlations at either of these frequencies
O lone. The regression analysis confirms that, at this
f= @7 equency, asynchronous coupling prevails. The only signifi-
ant coupling is asynchronous (right peak in figure 3¢(1),(i1))
nd suggests that the expression of 48 Hz gamma activity in
ae parietal region is mediated, in part, by asynchronous
teractions directly, or vicariously, with the prefrontal
ortex. Note that a common modulating source, influencing
oth the parietal and prefrontal regions, cannot be invoked
s an explanation for this sort coupling because this effect
rould be expressed synchronously.
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(d) Summary

The above example was provided to illustrate both
1xed and asynchronous coupling and to introduce the
oncept that simply observing correlations between
ifferent frequency modulations is not sufficient to infer
synchronous coupling. Broad-band coherence in the
ontext of oscillations leads naturally to cross-frequency
oupling and, more importantly, non-oscillatory but
ynchronous interactions will, as a matter of course, intro-
uce them by virtue of the tight correlations between
ifferent frequencies within each area (e.g. Jurgens et al.
995). By discounting these within time-series correlations,
sing the orthogonalization above, one can reveal any
nderlying asynchronous coupling. Results of this sort are
urly typical (we have replicated them using different
abjects and tasks) and provide definitive evidence for
synchronous coupling. Generally our analyses show both
e ynchronous and asynchronous effects, where the latter are
ypically greater in terms of the proportion of variance
xplained. As in the example presented here, it is usual to

w— nd both sorts of coupling expressed in the same data.
2 (J In conclusion, using an analysis of the statistical depen-
ence between spectral densities measured at different
— oints in the brain, the existence of asynchronous
oupling can be readily confirmed. It is pleasing that such
simple analysis should lead to such an important
onclusion. These results are consistent with transient
oding and imply that correlations (rate coding) and
w oherence (synchrony coding) are neither complete nor
O ifficient characterizations of neuronal interactions and
aggest that higher-order, more general interactions may
e employed by the brain. In the remaining sections, the
nportance of asynchronous their
1echanistic basis will be addressed using both simulated

nd real neuronal time-series.
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5. COUPLING AND CODES

(a) Asynchronous coupling and nonlinear interactions

Why is asynchronous coupling so important? The
reason 1is that asynchronous interactions embody all the
nonlinear interactions implicit in functional integration
and it 1s these that mediate the diversity and context-
sensitive nature of neuronal interactions. The nonlinear
between cortical brain areas
renders the effective connectivity among them inherently
dynamic and Compelling examples of
context-sensitive include the
modulation of evoked responses in functionally specia-
lized sensory areas (e.g. Treue & Maunsell 1996) and
other contextually dependent dynamics (see Phillips &
Singer (1997) for an intriguing discussion).

One of the key motivations for distinguishing between
synchronous and asynchronous coupling is that the under-

nature of interactions

contextual.

interactions attentional

lying mechanisms are fundamentally different. In brief; it
will be suggested that synchronization emerges from the
reciprocal exchange of signals between two populations,
wherein the activity in one population has a direct or
‘driving’ effect on the activity of the second. In asynchro-
nous coding, the incoming activity from one population
may exert a ‘modulatory’ influence, not on the activity of
units in the second, but on the interactions among them
(e.g. effective connectivity). This indirect influence will-
lead to changes in the dynamics intrinsic to the second
population that could mediate important contextual and
nonlinear responses. Before addressing the neural basis of
these effects in the next section, the relationship between
asynchrony and nonlinear coupling is established and
discussed in relation to neuronal codes.

Perhaps the easiest way to see that synchronized inter-
actions are linear is to consider that the dynamics of any
particular neuronal population can be modelled in terms
of a Volterra series of the inputs from others. If this
expansion includes only the first-order terms then the
first-order Volterra kernel
completely specifies the relationship between the spectral

Fourier transform of the

density of input and output in a way that precludes inter-
actions among frequencies, or indeed inputs (as shown
below). The very presence of significant coupling between
frequencies, above and beyond covariances between the
same frequencies, implies a first-order approximation is
insufficient and, by definition, second- and higher-order
nonlinear terms are required. In short, asynchronous
coupling reflects the nonlinear component of neuronal
interactions and as such is vital for a proper characteriza-
tion of functional integration.

To see more explicitly why asynchronous interactions
are so intimately related to nonlinear effects consider
equation (3) where, for simplicity, we focus on the effects
of unit j on unit ¢, discounting the remaining units.

x;(1) = Qolx (0)] + Qo (0)] + Qoo ()] + ., (7)

where x;(f) is the activity of one unit or population and
x;(f) another. By discounting the constant and high-order
terms we end up with a simple convolution model of

neuronal interactions:

x;(1) = Ql[xj(t)] = /z1®xj(t), (8)
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igure 3. Time-frequency analysis of MEG time-series from two remote cortical regions designed to characterize the relative
ontribution of synchronous and asynchronous coupling; in terms of correlated changes in spectral density within and among
‘equencies respectively. Neuromagnetic data were acquired from normal subjects using a KENIKRON 37 channel MEG system
t 1 ms intervals for periods of up to 2 min. During this time subjects were asked to make volitional joystick movements either in
wn 2ndom directions, or to the left, every 2 or so. Epochs of data comprising 2" ms were extracted. ECG artefacts were removed
y linear regression and the data were transformed using a V3 transformation (i.e. Laplacian derivative (loannides et al. 1990))

> minimize spatial dependencies among the data. Paired epochs were taken from a left prefrontal and left parietal region that
rere subsequently bandpass filtered (1-128 Hz). The data in this figure come from a normal male performing leftwards move-
1ents. (a) The two times-series x(¢) (plots) and their corresponding time-frequency profiles g(w,t) (images). The first

me-series comes from the left prefrontal region roughly over the anterior cingulate and SMA. The second comes from the left
0 iperior parietal region. The data have been normalized to zero mean and unit standard deviation. The frequencies analysed
rere 8 Hz to 64 Hz in 1 Hz steps. (4) This is a simple characterization of the coupling among frequencies in the two regions and
>presents the cross-correlation matrix of the time-frequencies g(w,¢). In this display format the correlation coefficients have

een squared. (¢) These are the results of the linear regression analysis that partitions the amount of modulation in the second
parietal) time-series into components that can be attributed to synchronous (broken lines) and asynchronous (solid lines)
ontributions from the first (prefrontal) time-series (see main text and Appendix D). (1) The relative contribution in terms of the
roportion of variance explained, and (ii) in terms of the significance using a semi-log plot of the corresponding p-values, both as
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there ® denotes convolution and /4, is the first-order
‘olterra kernel. This can be expressed in the frequency
omain as

d(wi) = [Hw)]* x g(wp), 9)

here [(w) is known as the transfer function and is
mply the Fourier transform of the first-order kernel #,.
“his equality says that the expression of any frequency
1 unit ¢ is predicted exactly by the expression of the
ame frequency in unit j (after some scaling by the
>= -ansfer function). This is exactly how synchronous inter-
= ctions have been characterized and furthermore is iden-
R cal to the statistical model employed to test for
™ ynchronous interactions above. In equation (6), the

arameters [3(w,) are essentially estimates of |/(w,)|? in
Oquation (9). From this perspective the tests for asyn-
U hronous interactions in §4 can be viewed as an implicit

>st of nonlinear interactions, while discounting a linear
10del as a sufficient explanation for the observed
oupling. See Erb & Aertsen (1992) for an example of
that obtain after the equations,
efining a simulated neuronal population, have been
amplified to render them linear.

In summary, the critical distinction between synchro-
ous and asynchronous coupling is the difference between
near and nonlinear interactions among units or popula-
ons. Synchrony implies linearity. The term ‘generalized
ynchrony’ has been introduced to include nonlinear inter-
ependencies (see Schiff et al. 1996). Generalized
ynchrony therefore subsumes synchronous and asynchro-
ous coupling. A very elegant method for making
iferences about generalized synchrony is described in
chiffet al. (1996). This approach is particularly interesting
-om our point of view because it implicitly uses the recent
istory of the dynamics through the use of temporal
mbedding to
Iowever, unlike our approach based on a Volterra series
»rmulation, it does not explicitly partition the coupling
1to synchronous and asynchronous components.

-ansfer functions
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reconstruct the attractors analysed.

(b) The taxonomy revisited
Relating synchrony and asynchrony directly to the
‘olterra series formulation leads to a more formal and
rincipled taxonomy of putative neuronal codes. Recall
aat the first level of the taxonomy distinguishes between
cansient codes and instantaneous codes. In terms of the
= 'olterra model the latter are a special case of
g (Jquation (7), when all the Volterra kernels shrink to a

O oint in time. In this limiting case the activity in one unit

%0]

Ery . D

R

is simply a nonlinear function of the instantaneous
activity in the other unit (i.e. a polynomial expansion).

x;(t) = ho+ hyx;(t) + hy x,(1)° + ... . (10)

All other cases enter under the rubric of transient codes.
These can be similarly decomposed into those that include
nonlinear terms (asynchronous) and those that do not
(synchronous). The final level of decomposition is of
synchronous interactions into oscillatory and non-
oscillatory. The former is a special case where the transfer
function /(w) shrinks particular
frequency. (For completeness it should be noted that
oscillatory codes expressed as kernels of any order, that
exist predominantly at one frequency may exist; G.
Green, personal communication).

In this framework, it can be seen that the most impor-
tant distinction, that emerges after discounting special or
limiting cases, 1s that between asynchronous and synchro-
nous coupling and the implicit contribution of nonlinear
interactions. The presence of coupling among different
frequencies, demonstrated in § 4, speaks to the prevalence
of strong nonlinearities in the functional integration of
neuronal populations. The nature of these nonlinearities
is the focus of the rest of this paper.

down on to one

6. THE NEURAL BASIS OF ASYNCHRONOUS
INTERACTIONS

In Friston (1997b) it was suggested that, from a neuro-
biological perspective, the distinction between asynchro-
nous and synchronous interactions could be viewed in the
following way. Synchronization emerges from the reci-
procal exchange of signals between two populations,
where each ‘drives’ the other, such that the dynamics
become entrained and mutually reinforcing. In asynchro-
nous coding the afferents from one population exert a
‘modulatory’ influence, not on the activity of the second,
but on the interactions among them (e.g. eflective
connectivity or synaptic efficacy) leading to a change in
the dynamics intrinsic to the second population. In this
model, there is no necessary synchrony between the
intrinsic dynamics that ensue and the temporal pattern of
modulatory input. An example of this may be the facilita-
tion of high-frequency gamma oscillations among nearby
columns in visual cortex by transient modulatory input
from the pulvinar. Here the expression of low-frequency
transients in the pulvinar will be correlated with the
expression of high-frequency transients in visual cortex.
To test this hypothesis one would need to demonstrate
that asynchronous coupling emerges when extrinsic

PHILOSOPHICAL TH
TRANSACTIONS

igure 3. (Cont.) functions of frequency in the parietal region. The dotted line in the latter corresponds to p = 0.05 (uncorrected
or the frequencies analysed). This particular example was chosen because it illustrates all three sorts of coupling (synchronous,
synchronous and mixed). From inspection of the cross-correlation matrix it is evident that power in the beta range (20 Hz) in
1e second time-series is correlated with similar frequency modulation in the first, albeit at a slightly lower frequency. The

O zsulting correlations appear just off the leading diagonal (broken line) on the upper left. The graphs on the right show that the
roportion of variance explained by synchronous and asynchronous coupling is roughly the same and, in terms of significance,
ynchrony supervenes. In contrast the high correlations, between 48 Hz in the second time-series and 26 Hz in the first, are well
way from the leading diagonal, with little evidence of correlations within either of these frequencies. The regression analysis
onfirms that, at this frequency, asynchronous coupling prevails. The variation at about 34 Hz in the parietal region could be

xplained by several frequencies in the prefrontal region. A formal analysis shows that both synchronous and asynchronous
oupling coexist at this frequency (i.e. the middle peak in the graphs on the right).

hil. Trans. R. Soc. Lond. B (2000)
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igure 4. Simulated local field potentials (LFP) of two coupled populations using two different sorts of postsynaptic responses
AMPA and NMDA-like) to extrinsic inputs, to the second population from the first. These data were simulated using the model
escribed in figure 1 and Appendix B. The dotted line shows the depolarization effected by sporadic injections of current into the
rst population. The key thing to note is that under AMPA-like or driving connections the second population is synchronously
ntrained by the first (a), whereas, when the connections are modulatory or voltage dependent (NMDA), the effects are much
10re subtle and resemble a frequency modulation (4). For the AMPA simulation self-excitatory AMPA connections of 0.15 and
.06 were used for the first and second populations, respectively, with an AMPA connection between them of 0.06. For the
MDA simulation the self-excitatory connection was increased to 0.14 in the second population and the AMPA connection
etween the populations was changed to NMDA-like with a strength of 0.6.

onnections are changed from driving connections to
10dulatory connections. Clearly this cannot be done in
he real brain. However, we can use computational
>chniques to create a biologically realistic model of inter-
cting populations and test this hypothesis directly.

(a) Interactions between simulated populations
Two populations were simulated using the model
escribed in Appendix B. This model simulated entire
euronal populations in a deterministic or analogue
ishion based loosely on known neurophysiological
1echanisms. In particular, we modelled three sorts of

ynapse, fast inhibitory (GABA), fast excitatory (AMPA)

hil. Trans. R. Soc. Lond. B (2000)

and slower voltage-dependent synapses (NMDA).
Connections intrinsic to each population used only
GABA- and AMPA-like synapses. Simulated glutami-
nergic extrinsic connections between the two populations
used either driving AMPA-like synapses or modulatory
NMDA-like synapses. In these and the remaining simula-
tions, transmission delays for extrinsic connections were
fixed at 8 ms. By using realistic time constants the charac-
teristic oscillatory dynamics of each population were
expressed in the gamma range.

The results of coupling two populations with unidirec-
tional AMPA-like connections are shown in figure 4a in

terms of the simulated local field potentials (LIFP).
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rere too small to compute.

Jccasional transients in the driving population were
mulated by injecting a depolarizing current, of the same
1agnitude, at random intervals (dotted line). The tight
ynchronized coupling that ensues is This
xample highlights the point that near-linear coupling
wan arise even in the context of loosely coupled, highly
O onlinear neuronal oscillators of the sort modelled here.
t should be noted that the connection strengths had to be
arefully chosen to produce this synchronous entraining.
)riving connections do not necessarily engender synchro-
ized dynamics, a point that we will return to later.
ontrast these entrained dynamics under driving connec-

evident.
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igure 5. Time-frequency and coupling analyses for the LFPs of the simulations employing AMPA-like connections. The format
nd underlying analyses of this figure are identical to figure 3. The key thing to note is that the cross-correlations are almost
ymmetrical, suggesting synchrony and extensive broad-band coherence. Indeed most p-values for synchronous (linear) coupling

tions with those that emerge when the connection is
modulatory or NMDA-like (figure 44). Here there is no
synchrony and, as predicted, fast transients of an oscilla-
tory nature are facilitated by the afferent input from the
first population. This 1s a nice example of asynchronous
coupling that is underpinned by nonlinear modulatory
interactions between neuronal populations. The nature of
the coupling can be characterized more directly using the
time-frequency analysis (identical in every detail) applied
to the neuromagnetic data of the previous section.

Figure 5 shows the analysis of the AMPA simulation
and demonstrates very clear broad-band coherence with
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10st of the cross-correlations among different frequencies
/ing symmetrically about the leading diagonal.
ynchrony accounts for most of the coupling, both in
orms  of the frequency modulation
w figure 5¢(1)) and in terms of significance (figure 5¢(i1)).
Olote that at some frequencies the synchronous coupling
ras so significant that the p-values were too small to
ompute. These results can now be compared to the
quivalent analysis of the NMDA simulation (figure 6).

In contradistinction, the cross-correlation matrix looks
wuch more like that obtained with the MEG data in

variance in

hil. Trans. R. Soc. Lond. B (2000)

time-frequency

time-series time-frequency

20 40 60
frequency (Hz) (256 ms window)

igure 6. As for figure 5 but now for simulations employing voltage-dependent NMDA-like connections. In contradistinction to
gure 5, the coupling here includes some profoundly asynchronous (nonlinear) components involving frequencies in the gamma
ange implicated in the analyses of real (MEG) data shown in figure 3. In particular, note the asymmetrical cross-correlation
1atrix and the presence of asynchronous and mixed coupling implicit in the p-value plots on the lower right.

figure 3. Both in terms of the variance, and inference,
asynchronous coupling supervenes at most frequencies
but, as in the real data, mixed coupling is also evident.
These results can be taken as a heuristic conformation of
the hypothesis that modulatory, in this case voltage-
dependent, interactions are sufficiently nonlinear to
account for the emergence of asynchronous dynamics.

In summary, asynchronous coupling is synonymous
with nonlinear coupling. Nonlinear coupling can be
framed in terms of the modulation of intrinsic inter-
actions, within a cortical area or neuronal population, by
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xtrinsic input offered by afferents from other parts of the

rain. This mechanism predicts that the modulation of

st (e.g. gamma) activity in one cortical area can be

redicted by a (nonlinear function of) activity in another

rea. This form of coupling is very different from coher-

nce or other metrics of synchronous or linear coupling

nd concerns the relationship between the first-order

ynamics in one area and the second-order dynamics

spectral density) expressed in another. In terms of the

bove NMDA simulation, transient depolarization in the

— 10dulating population causes a short-lived increased

< 1put to the second. These afferents impinge on voltage-

o >=-nsitive NMDA-like synapses with time constants (in the

O F=10del) of 100ms. These synapses open and slowly close

Qﬁ Fd gain, remaining open long after an afferent volley.

= ecause of their voltage-sensitive nature, this input will

ave no effect on the dynamics intrinsic to the second

: O opulation unless there is already a substantial degree of

= V) epolarization. If there is, then, through self-excitation

nd inhibition, the concomitant opening of fast excitatory

nd inhibitory channels will generally increase membrane

onductance, the eflective membrane

onstants and lead to fast oscillatory transients. This is
rhat we observe in figure 46.

E

decrease time

b) Nonlinear interactions and frequency modulation
The above considerations suggest that modulatory
fferents can mediate a change in the qualitative nature
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f the intrinsic dynamics though a nonlinear voltage-
ependent effect that can be thought of in terms of a
‘equency modulation of the intrinsic dynamics by this
1put. This motivates a plausible model of the relation-
aip, between the intrinsic dynamics of one population,
haracterized by its spectral density go(wy,t) and the
ctivity in the first population (), that is mediated by
1e modulatory effects of the latter. These effects can be
10deled with a Volterra series:

2 (woot) = Qo2 (O] + Q[ (O] + ... . (11)

t is interesting to note that this relationship is a more
eneral version of the statistical model used to test for
oupling in the previous section, namely equation (5).

B

“his 1s because a time-frequency analysis itself is a simple
»rm of a Volterra series (see Appendix C). The motiva-
N OTL behind this particular form of coupling between two
egions is predicated on the mechanistic insights provided
y simulations of the sort presented above.
= Given the dynamics of the two populations from the
3 (J MDA simulations, we can now estimate the form and
gnificance of the Volterra kernels in equation (11) to
[ un haracterize more precisely the nature of the nonlinear
oupling. In this case, the Volterra kernels were estimated
sing ordinary least squares. This involves a dimension

ROYAL

H

eduction and taking second-order approximations of the
‘olterra series expansion (see Appendix E for details).
nferences about the significance of these kernels are
1ade by treating the least-squares estimation as a general
near model in the context of a multiple regression for
crially correlated data (Worsley & Friston 1995) as for
1e time-frequency analyses. The results of this analysis,
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or each frequency w,, are estimates of the Volterra
ernels themselves (figure 70) and their significance, i.e.

hil. Trans. R. Soc. Lond. B (2000)

the probability of obtaining the observed data if the
kernels were equal to zero (figure 7a). By applying the
estimated kernels to the activity in the first population
one can visualize the expected and actual frequency
modulation at w,, (figure 7¢).

It 1s clear that this approach picks up the modulation of
specific frequency components in the second population
and furthermore the time constants (i.e. duration or
temporal extent of the Volterra kernels) are consistent
with the time constants of channel opening in the simula-
tion, in this case the long time constants associated with
voltage-dependent mechanisms. Knowing the form of the
Volterra kernels allows one to characterize the frequency
modulation elicited by any specified input. Figure 8 shows
the actual frequency structure of the modulated popula-
tion in the NMDA simulation and that predicted on the
basis of the activity in the first population. Figure 84
shows the complicated form of frequency modulation that
one would expect with a simple Gaussian input over a
few hundred milliseconds.

Of course the critical test here is to apply this analysis
to the real data of §5 and see if similar effects can be
demonstrated. They can. A good example is presented in
figure 9, showing how a slow, nonlinear function
(modelled by the Volterra kernels) of prefrontal activity
closely predicts the expression of fast (gamma) fre-
quencies in the parietal region. The implied modulatory
mechanisms, which may underpin this effect, are entirely
consistent with the anatomy, laminar specificity and func-
tional role attributed to prefrontal efferents (Rockland &
Pandya 1979; Selemon & Goldman-Rakic 1988).

7. CONCLUSION

This paper has introduced some basic considerations
pertaining to neuronal interactions in the brain, framed in
terms of neuronal transients and nonlinear coupling. The
key points of the arguments developed in this paper follow.

(1) Starting with the premise that the brain can be
represented as an ensemble of connected input—
state—output systems (e.g. cellular compartments,

or populations of cells), there

equivalent input—output formulation in terms of a

cells exists an
Volterra-series expansion of each system’s inputs that
produces its outputs (where the outputs to one
system constitute the inputs to another).

(11) The existence of this formulation suggests that the
history of inputs, or neuronal transients, and the
Volterra kernels are a complete and sufficient
specification of brain dynamics. This is the primary
motivation for framing dynamics in terms of
neuronal transients (and using a Volterra formulation
for models of effective connectivity).

(111) The Volterra formulation provides constraints on the
form that neuronal interactions and implicit codes
must conform to. There are two limiting cases:
(1) when the neuronal transient has a very short
history; and (i) when high-order terms disappear.
The first case corresponds to instantaneous codes
(e.g. rate codes) and the second to synchronous inter-
actions (e.g. synchrony codes).

(iv) High-order terms in the Volterra model of effective
connectivity speak explicitly to nonlinear interactions
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igure 7. Nonlinear convolution (i.e. Volterra kernel) characterization of the frequency modulation effected by extrinsic
10dulatory inputs on the fast intrinsic dynamics. The analysis described in Appendix E was applied to the simulated LFPs
r10wn in figure 4 using NMDA-like connections. These are the same time-series analysed in figure 6. In this instance, we have
-ied to find the Volterra kernels that best model the frequency modulation of the dynamics in the second simulated population
iven the time-series of the first. (a) Plot of the significance of the Kernels as a function of frequency in the modulated (second)
opulation. For the most significant effects (at 25 Hz) the estimated first- and second-order kernels are shown in (). Applying
1ese kernels to the time-series of the first population (dotted lines in (¢)) one obtains a modulatory variable (solid line) that best

redicts the observed frequency modulation (bottom line in (¢)).

and implicitly to asynchronous coupling. Asynchro-

coupling implies coupling among the
expression of different frequencies.

v) Coupling among the expression of different frequen-
cies 1s easy to demonstrate using neuromagnetic

nous

measurements of real brain dynamics. This implies
that nonlinear, asynchronous coupling is a prevalent
component of functional integration.

vi) High-order terms in the Volterra model of effective
connectivity correspond to modulatory interactions
that can be construed as a nonlinear effect of inputs
that interact with the dynamics intrinsic to the reci-
pient system. This implies that driving connections
may be linear and engender synchronous inter-
actions, whereas modulatory connections, being

hil. Trans. R. Soc. Lond. B (2000)

nonlinear, may cause, and be revealed by, asynchro-
nous coupling.

The latter sections of this paper have shown that
asynchronous coupling can account for a significant and
substantial component of interactions between brain
areas as measured by neuromagnetic signals. Asynchro-
nous coupling of this sort implies nonlinear coupling and
both speak to the differential form of neuronal transients
that are expressed coincidentally in different brain areas.
This observation has been extended by testing the
hypothesis that a parsimonious and neurobiologically
plausible mechanism of nonlinear coupling employs
voltage-dependent synaptic interactions. This led to the
prediction that the dynamics in one region can predict the
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igure 8. Characterization of the observed and predicted frequency modulation using the estimated Volterra kernels from the
nalysis summarized in figure 7. (a) Actual, and (4) predicted, time-frequency profiles of the LIFP of the second population. The

redicted profile was obtained using the frequency-specific kernel e
ernels can be applied to any input, for example the ‘synthetic’ transient in (¢). (d) The ensuing frequency modulation shows a

5Hz.

OYAL
TY

l_[_]hanges in the frequency structure (a metric of intrinsic
Cd — ynamics) in another. Not only is this phenomenon easily
bserved in real data, but in many instances it is extremely
gnificant. In particular, it was shown that a nonlinear

HE

— anction of prefrontal dynamics could account for a signifi-
ant component of the frequency modulation of parietal
ynamics. It should be noted that dynamic changes in
sectral density may arise spontaneously from metastable
ynamics even in the absence of extrinsic input (see
| riston, paper 2, this issue). However, this does not affect
O1e conclusions above because it has been shown that at
sast some of the (parietal) frequency modulation can be
xplained by extrinsic (prefrontal) inputs.

The importance of these observations relates both to the
1echanisms of functional integration in the brain and to

PHILOSOPHICAL
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1e way that we characterize neuronal interactions. In
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stimates applied to the LFP of the first population. These

iphasic suppression around 40 Hz activity with transient increases (with different latencies and time constants) at 25, 50 and

particular, these results stress the importance of asynchro-
nous interactions that are beyond the scope of synchrony.
Although this conclusion is interesting from a theoretical
standpoint, in terms of identifying the right metric that is
sensitive to the discourse between different brain areas, it
also has great practical importance in the sense that many
ways of characterizing neuronal time-series are based on
synchronization or linear models of neuronal interactions
(e.g. cross-correlograms, principal component analysis,
singular value decomposition, coherence analyses etc.). An
appreciation that nonlinear effects can supervene in terms
of their size and significance over linear effects such as
coherence (see figure 3) may be important to ensure that
we are measuring the right things when trying to charac-
terize functional integration. The theoretical implications
are far-reaching because they appeal directly to the
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igure 9. Nonlinear convolution (i.e. Volterra kernel) characterization of the frequency modulation of parietal dynamics that

btains by treating the prefrontal time-series as an extrinsic modulatory input. The format and underlying analyses of this

gure are identical to the analysis of simulated LFPs presented in figure 7. (a) There is evidence here for profound frequency

10dulation at 48 Hz that appears to be loosely associated with movement but not completely so. The top traces in (¢) represent
1e observed prefrontal time-series before and after nonlinear convolution with the estimated kernels on the upper right. The

>-‘ 1ddle trace is the parietal time-series filtered at 48 Hz and the lower trace is the electromyogram reflecting muscle activity
ssociated with movement. (b) Inspection of the first- and second-order kernels suggests that fast gamma (48 Hz) activity in the

- arjetal region is modulated by the transient expression of alpha (8 Hz) activity in the prefrontal region.
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I ontext-sensitive nature of neuronal interactions. Modula-  systems theory and complexity to arrive at a view of

— w1y effects are probably central to the mechanisms that  functional organization in the brain that embraces both
1ediate attentional changes in receptive field properties  linear and nonlinear interactions.

2“2 nd more generally the incorporation of context when

L_)O onstructing a unit’s responses to sensory inputs (see

L= | ‘hillips & Singer 1997). One of the reasons that we chose  K.J.F. is funded by the Wellcome Trust. I would like to thank

8U w he prefrontal and parietal regions in the MEG analyses Nicki Roffe for help preparing this manuscript and Semir Zeki,

tn% Oas that both these regions are thought to participate in ~ Richard Iackowiak, Erik Lumer, Dave Chawla, Christian

OZ istributed attentional systems (e.g. Posner & Petersen Bllmhe'l, Qhrls Frith, Cathy. Price and the reviewers for their

='< 990 d indeed k with fMRI in h scientific input. Some of this work was first presented orally at

Lo . ) and indeed our own work wi - human the Fifth Dynamical Neuroscience Satellite Symposium of

&= | abjects suggests a modulatory role for prefrontal - parietal Society for Neuroscience in New Orleans in 1997. I would like to

rojections (Buichel & IFriston 1997). In paper 2 (Iriston, acknowledge the useful feedback and comments from that
his issue) we relate neuronal transients to dynamical  meeting.
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APPENDIX A. NONLINEAR SYSTEM IDENTIFICATION
AND VOLTERRA SERIES

leuronal and neurophysiological dynamics are inherently
onlinear and lend themselves to modelling by nonlinear
ynamical systems. However, due to the complexity of
1ological systems it is difficult to find analytical equa-
ons that describe them adequately. An alternative is to
dopt a very general model (Wray & Green 1994). A
onventional method for representing a nonlinear
ynamic system (e.g. a neuron) is an input—state—output
10del (Manchanda & Green 1998). These models can be
= lassified as either that of a fully nonlinear system (where
[=1e inputs can enter nonlinearly) or a linear-analytical
[.I.] ystem with the form

()]0t = U+ﬁ@x%}

3

5O
i"

rhere s is a vector of states (e.g. the electrochemical state
{ every cell compartment), f}, f, and f; are nonlinear
anctions, x; is the input (e.g. afferent activity from unit )
nd x; the output (e.g. efferent activity from unit ¢).
imple extensions to this description accommodate
wltiple inputs. Using functional expansions, Fliess e/ al.
[983) have shown how more general nonlinear different-
1l models can be reduced to a linear-analytical form.
"he Fliess fundamental formula describes the causal rela-
.onship between the outputs and the recent history of the
wputs. This relationship can be expressed as a Volterra
cries. Volterra series allow the output to be computed
urely on the basis of the past history of the inputs
rithout reference to the state vector. The Volterra series is
n extension of the Taylor series representation to cover
ynamic systems and has the general form

(D) = Q)]+ Qx(D)]+ ...+ Q[xe®)]+ ...,

there Q,[-] is the nth order Volterra operator:

}: 21/ /ﬂﬁuwnn

x;, (8 —ug)du; ... du,.

n
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(A2)

Xx (E—u) ...

() =[x ), x5(0),
t

her connected units. /Z;l ¥
i

B

..] 1s the neuronal activity in all the
is the nth order Volterra
ernel for units j;...j,. It can be shown that these series
an represent any analytical time-invariant system. For
= 1lly nonlinear systems the above expansion, about the
Uurrent inputs, can be considered as an approximation

aat is locally correct. If the inputs enter in a sufficiently
wn onlinear way the Volterra kernels will themselves change
rith iput (cf. activity-dependent synaptic connections),
omething that will be developed in paper 2 (Iriston, this
isue) 1n terms of instability and complexity. The Volterra
cries has been described as a ‘polynomial series with
1emory’ and is more generally thought of as a high order
r ‘nonlinear convolution’ of the inputs to provide an
utput. See Bendat (1990) for a fuller discussion.

From the present perspective the Volterra kernels are
ssential in characterizing the effective connectivity or
1fluences that one neuronal system exerts over another
ecause they represent the causal characteristics of the

LETY
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system in question. Volterra series provide central links to
methods of describing input—output
behaviour such as the time-frequency analyses used in
this paper. See Manchanda & Green (1998) for a fuller
discussion of Volterra series in the context of neural

conventional

networks.

APPENDIX B. THE NEURONAL SIMULATIONS

The simulations used a biologically plausible model of the
dynamics of either one or several neuronal populations.
The model was of a deterministic or ‘analogue’ sort (cf.
Erb & Aertsen 1992) whose variables pertain to the
collective, probabilistic behaviour of subpopulations of
The variables in this model represent the
expected transmembrane potentials over units in each
subpopulation and the probability of various events
underlying changes in that mean. Each population was
modelled in terms of an excitatory and inhibitory sub-
population (see Jefferys et al. (1996) for an overview of
these architectures) whose expected (i.e. mean) trans-
membrane potentials V; and V, were governed by the
following differential equations.

neurons.

CxaV,|0t= g, x(V,=V,)+ g, x(V,=V,)
g x (Vi=V)+gx(Vi=V)
, (BI)
CxXOVy|0t = gy, X (Vo=V,) + g x (Vo= V)
+gx Vo=V

where C is the membrane capacitance (taken to be 1 pF)
and g;,, g, and g, are the expected proportion of excita-
tory (AMPA-like and NMDA-like) and inhibitory
(GABA-like) channels open at any one time over all exci-
tatory units in the population. Similarly for g,, and go; in
the inhibitory population. g, is a leakage conductance. V,,
V; and V; are the equilibrium potentials for the various
channels and resting conditions respectively. Channel
configurations were modelled using a two-compartment,
first-order model, in which any channel could be open or
closed. For any given channel type £:

0gi 0t = (1 —g) X Py

where P, is the probability of channel opening and 7, is
the time constant for that channel type (to model classical
neuromodulatory effects 7,ypy was replaced by Taypa/
(1=M), where M was 0.8 unless otherwise specified). P,
was determined by the probability of channel opening in
response to one or more presynaptic inputs. This is simply
one minus the probability it would not open:

— &l Tk (B2)

Pp=1—=TI(1 = Py x Dy(t —uy)),

J

(B3)

where Py is the conditional probability that a discharge
event in subpopulation j would cause the channel to open
and D (t) is probability of such an event. P, represents the
mean synaptic efficacy for afferents from subpopulatlon]
and can be thought of as a connection strength. u; is the
associated transmission delay. The final expression closes
the loop and relates the discharge probability to the
expected transmembrane potential in equation (Bl).
D; = UU{Vj - Vr}:

J

(B4)
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there  o,{} is a sigmoid function o, {x}= 1/
1 + exp(—=«/n)). V, can be likened to the reversal
otential. For NMDA-like channels the channel opening

robability was voltage dependent:

,jl‘ = P;‘ X 0'8{.Vj - Vl‘}7 (B5)

rhere P; is the conditional probability of opening given a
resynaptic input from subpopulation j when the post-
ynaptic membrane is fully depolarized.

Each simulation comprised a 4096 iteration burn in
sllowed by 4096 iterations to see the dynamics that
>=nsued. Each iteration corresponds to 1ms. V; was taken
[=s an index of the simulated local field potential.
Qﬁ [d ‘oltage-dependent connections were only used between

== he excitatory subpopulations of distinct populations. The

atrinsic excitatory—inhibitory, inhibitory—excitatory and
: O]hibitoryfinhibitory connections P, where all fixed at
= un.6, 04 and 0.2, respectively. excitatory—
xcitatory connections were manipulated to control the
egree of spontaneous oscillation in the absence of other
wputs. Extrinsic connections were excitatory—excitatory
onnections, employing AMPA or NMDA
ynapses and were specified depending on the architec-
are of the system being modelled. All extrinsic trans-
ussion delays were 8 ms. Remaining model parameters

OYAL B

E

Intrinsic

either
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rere
. =0mV, g = 1/60 ms,
= —100mV, 7,= 6ms,
;= —60mV, 7,=100ms,
T =-20mV, 7,= 10ms,

7, = —10mV.

lote that sodium or potassium channels are not explicitly
10delled here. The nonlinear dependency of discharge
robability on membrane potential is implicit in equation

B4).

APPENDIX C. TIME-FREQUENCY ANALYSIS
AND WAVELET TRANSFORMATIONS

"he time-frequency analyses in this paper employed stan-
ard windowed Tourier transform techniques with a
56ms Hanning window. MEG frequencies analysed
- anged from 8 to 64 Hz. Using a continuous time formu-

ation, for any given time-series x(f), the [time-dependent]
— doectral density g(w,f) can be estimated as

B O () = Is(w)l?,

L O

— wn/here s(w,t) = x(1)® {w(t) X exp (— jwi)}

B

ROYA

(A
:/w(u) xexp (—jwt) X x(t— u)du

1 is 27 times the frequency in question and j = {/—1.
wlere ® denotes convolution and w(t) is some suitable
Oindowing function of length /. A Hanning function (a
ell-shaped function) w(¢) = (1 — cos (2mt/(I+ 1)))/2]
7ith 1= 256 iterations or milliseconds was used. This
rindowed Fourier transform approach to time-frequency
nalysis is interesting, in the present context, because it is

special case equation (A2), ie. g(w,t) obtains from
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applying a second-order Volterra operator to x(f), where
the corresponding kernel is

h(uy,uy) = w(uy) X wluy) X exp(— jwu,) X exp(— jwuy ). (C2)

(a) Relationship to wavelet analyses
This simple time-frequency analysis is closely related to
wavelet analyses, particularly those using Morlet wave-
lets. In wavelet analyses the energy at a particular scale is
given by

glwyt) = |x(t)® w(t,w)|2, C3)

where w(f,w) represents a family of wavelets. For example
the complex Morlet wavelet is

w(tw) = A X exp(— u*/20%) X exp(— jwt), (C4)

where the wavelet family 1s defined by a constant k (typi-
cally about 6) such that w X o = k. Intuitively an analysis
using Morlet wavelets is the same as a time-frequency
analysis in equation (Cl), but where the windowing
function becomes narrower with increasing frequency
(i.e. w(t) = A x exp(— u*/20%)). The relative advantages
of Morlet transforms, in terms of time-frequency resolu-
tion, are discussed in Tallon-Baudry et al. (1997).

APPENDIX D. DETECTING NONLINEAR
INTERACTIONS IN TERMS OF ASYNCHRONOUS
COUPLING

Nonlinear coupling between two dynamical systems is
often difficult to detect. There are two basic approaches,
which reflect the search for nonlinearities in general (see
Muller-Gerking (1996) for an excellent discussion). The
first involves reconstructing some suitable state space and
characterizing the dynamics using the ensuing trajectories
(e.g. Schiff et al. 1996). The second is to test for the
presence of nonlinearities using standard inferential tech-
niques to look at mutual predictability after discounting
linear coupling. The time-frequency analysis presented in
this paper is an example of the latter and is based on the
observation that significant correlations among different
frequencies (after removing those that can be explained
by the same frequency) can only be mediated by
nonlinear coupling.

The time-dependent spectral density at w of the time-
series x;() and x,(f) are estimated as above, with
g1 (w,t) = |5 (w,)|? Similarly for x,(¢) (see Appendix C). To
synchronous  (linear) and asynchronous
(nonlinear) coupling at a reference frequency wy, g;(wp,!)
is designated as the response variable, with explanatory
variables gy(wp,{) and g,(w,!)” in a standard multilinear
regression, extended to account for serially correlated
variables (Worsley & Friston 1995). go(w,!)” represents
modulation at all frequencies after the modulation at w
has been covaried out.

test for

8o (W>t>*:£2 (wW,8) =& (wo,t) Xpinv{g2 (WOJ)}X& (w,t), (DI1)

pinv{-} is the pseudo-inverse. This renders the synchro-
nous g,(wp,t) and asynchronous g, (w,t)* explanatory vari-
ables orthogonal. To test for asynchronous coupling the
explanatory variables comprise go(w,t) while gy(wp,t) is
treated as a confound. To test for synchronous coupling
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o(wy,!) is treated as the regressor of interest and gy(w,?)”
1e confounds. The ensuing multiple regressions give the
ppropriate sums of squares (synchronous and asynchro-
ous), F~values and associated p-values as a function of
- In practice, the spectral densities are subject to a
uadratic root transform as a preprocessing step, to
nsure the residuals are approximately multivariate Gaus-
an (Friston 1997q).
The inferences above have to be corrected for serial
residuals, necessarily introduced
uring the convolution implicit in the time-frequency
nalysis (Worsley & Friston 1995). Under the null hypoth-
>=sis these can be modelled by convolution with w(f)?, the
= juare of the window employed. This would be exactly
Fdight if we used the spectral densities themselves and is
= pproximately right using the quadratic root transform.
"his approximation leads to a test that is no longer exact
O ut 1s still valid (i.e. slightly conservative).

orrelations 1in the

S

APPENDIX E. ESTIMATING VOLTERRA KERNELS

The problem of estimating Volterra kernels is not a
civial one. We have adopted a standard least-squares
pproach. This has the advantage of providing for statis-
cal inference using the general linear model. 1o do this
ne must first linearize the problem. Consider the second-
approximation of equation (A2) with finite
nemory’ 7, where the input is a single time-series x(f)
nd the output is denoted by y(#).

(6) = Q[x()] + Q[x(0)] + Qo[x(1)].

OF

rder

TRANSACTIONS 1 HE ROYAL

(E1)

“he second step in making the estimates of A, A' and A2
10re tractable 1s to expand the kernels in terms of a small
umber P of temporal basis functions b,@). This allows us
> estimate the coefficients of this expansion using
-andard least squares:

S go

b
Hu) = D glbi(m)

J J
Fuyuy) = Zzgébz(”ﬁ X b;(uy) /

=1 j=1

(E2)

B

low define a new set of explanatory variables z;() that
epresent the original time-series x(f) convolved with the
h basis function. Substituting these expressions into equa-
.on (El) and including an explicit error term € gives

b )
() =g+ 3 gu+ DY galt) xgt) + e (B2)

=1 j=1

THE ROYAL
SOCIETY

“his 1s simply a general linear model with response vari-
ble (), the observed time-series, and explanatory vari-
bles 7, z;(t) and z;(¢) X z;(¢). These explanatory variables
w convolved time-series of the original explanatory vari-
Obles) constitute the columns of the design matrix. The
nknown parameters are g, g' and g? from which the
ernel coeflicients 4°, A' and /42 are derived, using equation
E2). Having reformulated the problem in this way we
an now use standard analysis procedures developed for
crially correlated time-series that employ the general
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linear model (Worsley & Itriston 1995). These procedures
provide parameter estimates (i.e. estimates of the basis
function coefficients and implicitly the kernels themselves)
and statistical inferences about the significance of the
kernels, or more precisely the effect that they mediate.
The issues of serial correlations in the residuals are iden-
tical to those described in Appendix D.
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